首页> 外文OA文献 >Automatic Pronunciation Generation by Utilizing a Semi-supervised Deep Neural Networks
【2h】

Automatic Pronunciation Generation by Utilizing a Semi-supervised Deep Neural Networks

机译:利用半监督深度自动生成语音   神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Phonemic or phonetic sub-word units are the most commonly used atomicelements to represent speech signals in modern ASRs. However they are not theoptimal choice due to several reasons such as: large amount of effort requiredto handcraft a pronunciation dictionary, pronunciation variations, humanmistakes and under-resourced dialects and languages. Here, we propose adata-driven pronunciation estimation and acoustic modeling method which onlytakes the orthographic transcription to jointly estimate a set of sub-wordunits and a reliable dictionary. Experimental results show that the proposedmethod which is based on semi-supervised training of a deep neural networklargely outperforms phoneme based continuous speech recognition on the TIMITdataset.
机译:语音或语音子词单元是现代ASR中代表语音信号的最常用原子元素。然而,由于以下几个原因,它们不是最佳选择:手工制作发音词典,发音变体,人为错误以及资源不足的方言和语言需要大量的精力。在这里,我们提出了一种数据驱动的语音估计和声学建模方法,该方法仅采用正交拼写来共同估计一组子单词单元和可靠的字典。实验结果表明,所提出的基于深度神经网络的半监督训练的方法在性能上大大优于TIMIT数据集上基于音素的连续语音识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号